雑記帳
僕用勉強ノート 「レイトレーシング」の巻

Haskell でレイトレーシングのチュートリアルを追いかける その9 - 透明の物体2

引き続きこのサイトのチュートリアルに則って、レイトレーシングによる画像の生成に挑戦。
進捗状況としては、「section 10-4 Schlick Approximation」にたどり着いたのだが、ここで一つ問題点に気付く。
球体の描画は問題なくできているのだが、トーラスの描画がうまくいっていない。
以下に示した結果の1枚目画像を見れば一目瞭然だが
・そもそも屈折の計算が正しくできていない
・最前面の赤いトーラスに黒いポチポチが発生している。
トーラスがそれらしい形として描画されていることからも、描画に使用しているトーラスの方程式それ自体は間違っていないと思うので、つまりはとある状況下でのレイとの交点の計算が正しくできていないのかな。
解く方程式が4次方程式になってしまうため、ソースコードを見ての通り数値解法で攻めているのだけどその辺がよくなかったりして...
コードの実行結果
実行結果
実行結果
(画像はファイルサイズを小さくしたい関係で JPEG 形式にコンバートしているため、各ピクセルの値は実際に得られた値とは微妙に異なります。)
ソースコード
{-# LANGUAGE TypeOperators #-}

module Main where

import Data.Char
import Data.Functor
import Control.Monad
import Control.Lens
import System.Random
import Linear.Vector
import Linear.Metric
import Linear.V3
import Linear.Quaternion

-- https://raytracing.github.io/books/RayTracingInOneWeekend.html
-- section 10-4 Schlick Approximation with Haskell!!


main :: IO ()
main = do
  let
    -- Image
    aspect_ratio = 16.0 / 9
    image_width = 400
    image_height = round $ fromIntegral image_width / aspect_ratio
    samples_per_pixel = 100
    max_depth = 50
    -- World
    material_ground  = make_shared $ MAT_Lambertian {albedo_Lamb = V3 0.8 0.8 0.0}
    material_center  = make_shared $ MAT_Lambertian {albedo_Lamb = V3 0.7 0.3 0.3}
    material_back    = make_shared $ MAT_Lambertian {albedo_Lamb = V3 0.3 0.5 0.7}
    material_center2 = make_shared $ MAT_Dielectric {ref_idx = 2.4}
    material_left    = make_shared $ MAT_Metal {albedo_Metal = V3 0.8 0.8 0.82, fuzz = 0.0}
    material_right   = make_shared $ MAT_Metal {albedo_Metal = V3 0.8 0.6 0.2, fuzz = 0.2}
    world = (((((([]
      --`add` RT_Sphere{center = V3 0.0 0.0 (-1.0), radius = 0.5, mat_Sphere = material_center})
      --`add` RT_Sphere{center = V3 (-0.95) 0.0 (-1.0), radius = 0.5, mat_Sphere = material_left})
      --`add` RT_Sphere{center = V3 1.05 0.0 (-1.0), radius = 0.5, mat_Sphere = material_right})
      `add` RT_Torus{
        centerOfTorus = V3 (-0.55) 0.0 (-2.1),
        majorRadius = 0.4,
        minorRadius = 0.1,
        orientationOfTorus = normalize $ V3 (0.5) 1.0 1.5,
        mat_Torus = material_left
        })
      `add` RT_Torus{
        centerOfTorus = V3 1.05 0.0 (-1.0),
        majorRadius = 0.3,
        minorRadius = 0.2,
        orientationOfTorus = normalize $ V3 (-0.5) (-0.2) (-3),
        mat_Torus = material_left
        })
      `add` RT_Sphere{center = V3 (-3.51) 2.4 (-5.9), radius = 2.9, mat_Sphere = material_center})
      `add` RT_Torus{
        centerOfTorus = V3 3.51 3.5 (-6.1),
        majorRadius = 2.7,
        minorRadius = 0.7,
        orientationOfTorus = normalize $ V3 0 0.4 1,
        mat_Torus = material_back
        })
      `add` RT_Torus{
        centerOfTorus = V3 0.05 0.2 (-1.2),
        majorRadius = 0.35,
        minorRadius = 0.15,
        orientationOfTorus = normalize $ V3 (-0.5) 1.2 1.9,
        mat_Torus = material_center2
        })
      `add` RT_Sphere{center = V3 0 (-10000.5) (-1), radius = 10000, mat_Sphere = material_ground})
    -- Camera
    camera = Camera {
      viewport_height = 2.0,
      viewport_width = aspect_ratio * viewport_height camera,
      focal_length = 1.0,
      origin = zero,
      horizontal = viewport_width camera *^ unit _x,
      vertical = viewport_height camera *^ unit _y,
      lower_left_corner =
        origin camera - horizontal camera ^/2 - vertical camera ^/2
        - focal_length camera *^ unit _z
      }


  -- Render

  img_data <- return $ "P3\n" ++ show image_width ++ " " ++ show image_height ++ "\n255\n"
  putStr $ img_data

  foldr (>>) (return ()) $ (fmap $ ($) $ \((j, i), seed) ->
    let
      f h currentData gen =
        if h < samples_per_pixel then
          let
            (randNum1, newGen1) = random gen :: (Double, StdGen)
            (randNum2, newGen2) = random newGen1 :: (Double, StdGen)
            u = (fromIntegral i + randNum1) / (fromIntegral image_width - 1.0)
            v = (fromIntegral j + randNum2) / (fromIntegral image_height - 1.0)
            r = get_ray camera (u, v)
            pixcel_color = ray_color r world max_depth newGen2
          in
            f (succ h) (currentData + pixcel_color) newGen2
        else
          currentData
    in
      write_color (f 0 zero (mkStdGen seed)) samples_per_pixel) $
      zip ((,) <$> [image_height - 1, image_height - 2 .. 0] <*> [0, 1 .. image_width - 1])
      ((randomRs (0, 536870912) (mkStdGen 21)) :: [Int])


---------------------
-- A Ray Data Type --
---------------------

data Ray = Ray {
  orig :: V3 Double,  -- Origin of this ray (As a position in 3D Euclidean space)
  dir :: V3 Double    -- Direction of this ray (As a direction vector in 3D Euclidean space)
} deriving (Show)


at' :: Ray -> Double -> V3 Double
at' r t = (orig r) + t *^ (dir r)


------------------------
-- A Camera Data Type --
------------------------

data Camera = Camera {
  viewport_height :: Double,
  viewport_width :: Double,
  focal_length :: Double,
  origin :: V3 Double,
  horizontal :: V3 Double,
  vertical :: V3 Double,
  lower_left_corner :: V3 Double
} deriving (Show)

get_ray :: Camera -> (Double, Double) -> Ray
get_ray this (u, v) =
  Ray {
    orig = origin this,
    dir = lower_left_corner this + u *^ horizontal this + v *^ vertical this - origin this
    }


----------------------
-- A Hittable Class --
----------------------

type HittableData = (RT_Sphere + RT_Torus) + RT_Sphere -- Third RT_Sphere is just dummies

class Hittable a where
  toSum :: a -> HittableData
  hit :: a -> Ray -> Double -> Double -> Maybe HitRecord

instance (Hittable a, Hittable b) => Hittable (a + b) where
  toSum = coPair(toSum, toSum)
  hit = coPair(hit, hit)

add :: Hittable a => [HittableData] -> a -> [HittableData]
add list obj = (toSum obj) : list

data HitRecord = HitRecord {
  p :: V3 Double,
  normal :: V3 Double,
  mat :: MaterialData,
  t :: Double,
  front_face :: Bool
} deriving (Show)


set_face_normal :: HitRecord -> Ray -> V3 Double -> HitRecord
set_face_normal this r outward_normal =
  let
    isOutside = (dir r `dot` outward_normal) < 0
  in
    HitRecord {
      p = p this,
      front_face = isOutside,
      normal = if isOutside then outward_normal else -outward_normal,
      t = t this,
      mat = mat this
      }

hitSomething :: [HittableData] -> Ray -> Double -> Double -> Maybe HitRecord
hitSomething list r t_min t_max =
  let
    f (list', r', closest_so_far, currentRecord) =
      case list' of
        x:xs ->
          let
            temp = hit x r' t_min closest_so_far
          in
            case temp of
              Just a ->
                f $ (xs, r', t a, temp)
              Nothing ->
                f $ (xs, r', closest_so_far, currentRecord)
        [] ->
          currentRecord

  in
    f $ (list, r, t_max, Nothing)


----------------------
-- Hittable Objects --
----------------------

-- Sphere
data RT_Sphere = RT_Sphere {
  center :: V3 Double,
  radius :: Double,
  mat_Sphere :: MaterialData
} deriving (Show)

instance Hittable RT_Sphere where
  toSum = Inj1 -: Inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      c1 = center obj
      r1 = radius obj
      oc = p0 - c1
      a = quadrance (dir r)
      half_b = oc `dot` dir r
      c = quadrance oc - (radius obj) ^ 2
      discriminant = half_b ^ 2 - a*c in

      if discriminant > 0 then
        let
          root = sqrt discriminant
          f k =
            case k of
              x:xs ->
                if t_min < x && x < t_max then
                  return $ set_face_normal HitRecord {
                    p = at' r x,
                    normal = zero,
                    t = x,
                    front_face = False,
                    mat = mat_Sphere obj
                    } r ((at' r x - c1) ^/ r1)
                else
                  f $ xs

              [] ->
                Nothing

        in
          f $ [(-half_b - root) / a, (-half_b + root) / a]
      else
        Nothing

-- Torus
data RT_Torus = RT_Torus {
  centerOfTorus :: V3 Double,
  majorRadius :: Double,
  minorRadius :: Double,
  orientationOfTorus :: V3 Double, -- [BEWARB] this pseudo-vector must be normalized
  mat_Torus :: MaterialData
} deriving (Show)

instance Hittable RT_Torus where
  toSum = Inj2 -: Inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      c1 = centerOfTorus obj
      r1 = majorRadius obj
      r2 = minorRadius obj
      n = orientationOfTorus obj
      s =
        getIntersection_forBoundingTorus obj r >>= (\(t_begin, t_end, sign) ->
          let
            x = newton's_method
              50
              (t_begin + sign * 1.0E-9, t_end + 1.0E-9)
              (t_begin + sign * 1.0E-9, 0)
              (findIntersection_forTorus obj r)
              (findIntersection_forTorus' obj r)
            y = newton's_method
              50
              (-(t_end + 1.0E-9), -(t_begin - 1.0E-9))
              (-(t_end + 1.0E-9), 0)
              ((findIntersection_forTorus obj r).negate)
              (negate.(findIntersection_forTorus' obj r).negate)
                >>= return.negate
          in
            case x of
              Just x' -> return x'
              Nothing ->
                case y of
                  Just y' -> return y'
                  Nothing -> []
        )
    in
      if null s then
        Nothing
      else
        let
          k = minimum s
          x = at' r k - c1
        in
          if t_min < k && k < t_max then
            return $ set_face_normal HitRecord {
              p = c1 + x,
              normal = zero,
              t = k,
              front_face = False,
              mat = mat_Torus obj
              } r ((x - (r1 *^ (normalize $ x - (n `dot` x) *^ n))) ^/ r2)

          else
            Nothing


-- Bounding cylinder-like torus for finding an adequate initial value for Newton's method
-- (Bounding sphere often gives us initial values cause detecting wrong intersections)
getIntersection_forBoundingTorus :: RT_Torus -> Ray -> [(Double, Double, Double)]
getIntersection_forBoundingTorus obj r =
  let
    c1 = centerOfTorus obj
    r1 = majorRadius obj
    r2 = minorRadius obj
    n = orientationOfTorus obj
    a = dir r
    b = orig r
    b' = b - c1
    ls1 = getIntersection_forCylinder (RT_Cylinder (c1, r1 + r2, r2, n)) r
    ls2 = getIntersection_forCylinder (RT_Cylinder (c1, r1 - r2, r2, n)) r
    tmp = length ls1 + length ls2
  in
    (case tmp of
      2 ->
        let
          ls = ls1 ++ ls2
        in
          if ls!!1 < ls!!0 then [(ls!!1, ls!!0)] else [(ls!!0, ls!!1)]
      4 ->
        let
          ls = [(ls1!!0), (ls2!!0), (ls2!!1), (ls1!!1)]
        in
          [(ls!!0, ls!!1), (ls!!2, ls!!3)]
      x -> []
    ) >>= (\(t_begin,t_end) ->
      return (max 0 t_begin, max 0 t_end, if t_begin<=0 && 0<=t_end then 1 else -1))
        >>= (\u@(t_begin, t_end, sign) -> if t_begin == t_end then [] else return u)



data RT_Cylinder = RT_Cylinder (V3 Double, Double, Double, V3 Double)


getIntersection_forCylinder :: RT_Cylinder -> Ray -> [Double]
getIntersection_forCylinder (RT_Cylinder (c1, r1, half_h, n)) r =
  let
    a = dir r
    b = orig r
    b' = b - c1
    alpha = quadrance a - (n `dot` a) ^ 2
    beta = 2 * ((a `dot` b') - (n `dot` a) * (n `dot` b'))
    gamma = quadrance b' - (n `dot` b') ^ 2 - r1 ^ 2
    discriminant = beta ^ 2 - 4 * alpha * gamma
  in
    if discriminant > 0 then
      let
        root = sqrt discriminant
        tmp0 = [-1, 1] >>= \x ->
          (return $ (-beta + x*root)/(2*alpha))
      in
        tmp0 >>= (\t1 ->
          let
            x = at' r t1
            tmp = n `dot` (x - c1)
          in
            if abs tmp < half_h then
              return t1
            else
              if n `dot` a == 0 then
                []
              else
                let
                  y0 = c1 + ((signum tmp) * half_h) *^ n
                  t2 = -(n `dot` (b - y0)) / (n `dot` a)
                  y = at' r t2
                  tmp2 = quadrance $ y - y0
                in
                  if tmp2 <= r1 ^ 2 then
                    return t2
                  else
                    []
          )
    else
      []

findIntersection_forTorus :: RT_Torus -> Ray -> Double -> Double
findIntersection_forTorus obj r t =
  (quadrance u + r1 ^2 - r2 ^ 2) ^ 2 - 4 * (r1 ^ 2) * (u `dot` (u - (n `dot` u) *^ n))
  -- quadrance u - 2 * r1 * (sqrt $ u `dot` (u - (n `dot` u) *^ n)) + r1 ^2 - r2 ^ 2
  where
    a = dir r
    u = at' r t - centerOfTorus obj
    n = orientationOfTorus obj
    r1 = majorRadius obj
    r2 = minorRadius obj

findIntersection_forTorus' :: RT_Torus -> Ray -> Double -> Double
findIntersection_forTorus' obj r t =
  4 * (a `dot` u) * (quadrance u + r1 ^ 2 - r2 ^ 2)
  - 8 * (r1^2) * (u `dot` (a - (n `dot` a) *^ n))
  -- 2 * (a `dot` u)
  -- - 2 * r1 * (u `dot` (a - (n `dot` a) *^ n)) / (sqrt $ u `dot` (u - (n `dot` u) *^ n))
  where
    a = dir r
    u = at' r t - centerOfTorus obj
    n = orientationOfTorus obj
    r1 = majorRadius obj
    r2 = minorRadius obj


findIntersection_forTorus'' :: RT_Torus -> Ray -> Double -> Double
findIntersection_forTorus'' obj r t =
  4 * (quadrance a) * (quadrance u + r1 ^ 2 - r2 ^ 2) + 8 * (a `dot` u) ^ 2
  - 8 * (r1^2) * (a `dot` (a - (n `dot` a) *^ n))
  where
    a = dir r
    u = at' r t - centerOfTorus obj
    n = orientationOfTorus obj
    r1 = majorRadius obj
    r2 = minorRadius obj


----------------------------------------
-- Computing the color of a given ray --
----------------------------------------

write_color :: V3 Double -> Int -> IO ()
write_color (V3 r g b) spp =
  let
    v' = V3 (sqrt $ r / fromIntegral spp) (sqrt $ g / fromIntegral spp) (sqrt $ b / fromIntegral spp)
    f = show.floor.(256*).(clamp 0 0.999)
  in
    do
      tmp <- return $ f(v' ^._x) ++ " " ++ f(v' ^._y) ++ " " ++ f(v' ^._z) ++ "\n"
      putStr $ tmp

ray_color :: Ray -> [HittableData] -> Int -> StdGen -> V3 Double
ray_color r objects depth gen =
  if depth <= 0 then
    zero
  else
    let
      record = hitSomething objects r 1.0E-9 infinity
    in
      case record of

        Just record' ->
          let
            (ret, gen1) = scatter (mat record') r record' gen
          in
            case ret of
              Just (scattered, attenuation) ->
                attenuation * (ray_color scattered objects (pred depth) gen1)

              Nothing ->
                zero

        Nothing ->
          let
            unit_direction = normalize $ (dir r)
            s = 0.5 * (unit_direction ^._y + 1.0)
          in
            lerp s (V3 0.5 0.7 1.0) (V3 1.0 1.0 1.0)


--------------------
-- Random numbers --
--------------------

random_in_unit_sphere :: StdGen -> (V3 Double, StdGen)
random_in_unit_sphere gen0 =
  let
    (rand1,gen1) = randomR (-1, 1) gen0 :: (Double, StdGen)
    (rand2,gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    (rand3,gen3) = randomR (-1, 1) gen2 :: (Double, StdGen)
    v = V3 rand1 rand2 rand3
  in
    if quadrance v >= 1 then
      random_in_unit_sphere gen3
    else
      (v, gen3)

random_unit_vector :: StdGen -> (V3 Double, StdGen)
random_unit_vector gen0 =
  let
    (a, gen1) = randomR (0, 2*pi) gen0 :: (Double, StdGen)
    (z, gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    r = sqrt $ 1 - z^2
  in
    (V3 (r*cos(a)) (r*sin(a)) z, gen2)


random_in_hemisphere :: V3 Double -> StdGen -> (V3 Double, StdGen)
random_in_hemisphere normal gen0 =
  let
    (in_unit_sphere, gen1) = random_in_unit_sphere gen0
  in
    if in_unit_sphere `dot` normal > 0 then
      (in_unit_sphere, gen1)
    else
      (-in_unit_sphere, gen1)

---------------
-- Utilities --
---------------

if' :: Bool -> a -> a -> a
if' True  x _ = x
if' False _ y = y

infinity :: RealFloat a => a
infinity = encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0)

deg2rad :: Floating a => a -> a
deg2rad degrees = degrees * pi / 180

clamp :: (Ord a, Num a) => a -> a -> a -> a
clamp x y val = (max x).(min y) $ val

isInClosedInterval :: (Ord a, Fractional a) => (a, a) -> a -> Bool
isInClosedInterval (a, b) val = (a <= val && val <= b)

isInOpenInterval :: (Ord a, Fractional a) => (a, a) -> a -> Bool
isInOpenInterval (a, b) val = (a < val && val < b)

newton's_method :: (Ord a, Fractional a) => Int -> (a, a) -> (a, a) -> (a -> a) -> (a -> a) -> Maybe a
newton's_method depth interval (current, prev) f f' =
  if (uncurry (/=)) interval && isInClosedInterval interval current && depth > 0 then
    if abs(current - prev) < 1.0E-10 then
      return current
    else
      newton's_method (pred depth) interval (current - (f(current) / f'(current)), current) f f'
  else
    Nothing

-- Joke
derivativeOf :: (Floating a) => (a -> a) -> Int -> a -> a
derivativeOf f precision =
  \x -> (f(x + dx) - f(x)) / dx
  where dx = 0.1^precision

reflect :: V3 Double -> V3 Double -> V3 Double
reflect v n = v - (2 * (n `dot` v)) *^ n

refract :: V3 Double -> V3 Double -> Double -> V3 Double
refract uv n eta_over_eta' =
  r_out_perp + r_out_parallel
  where
    cos_theta = (-uv) `dot` n
    r_out_perp = eta_over_eta' *^ (uv + cos_theta *^ n)
    r_out_parallel = (sqrt $ abs (1 - quadrance r_out_perp)) *^ (-n)


schlick :: Double -> Double -> Double
schlick cosine ref_idx =
  let
    r0 = ((1 - ref_idx) / (1 + ref_idx)) ^ 2
  in
    r0 + (1-r0) * (1 - cosine) ^ 5


--------------------
-- Material Class --
--------------------

type MaterialData = (MAT_Lambertian + MAT_Metal) + MAT_Dielectric

class Material a where
  make_shared :: a -> MaterialData
  scatter :: a -> Ray -> HitRecord -> StdGen -> (Maybe (Ray, V3 Double), StdGen)

instance (Material a, Material b) => Material (a + b) where
  make_shared = coPair(make_shared, make_shared)
  scatter = coPair(scatter, scatter)


-- Lambertian

data MAT_Lambertian = MAT_Lambertian {
  albedo_Lamb :: V3 Double
} deriving (Show)

instance Material MAT_Lambertian where
  make_shared = Inj1 -: Inj1
  scatter this r_in record gen =
    let
      (rand1, gen1) = random_unit_vector gen
      scattered_direction = normal record + rand1
      scattered = Ray{orig = p record, dir = scattered_direction}
      attenuation = albedo_Lamb this
    in
      (Just (scattered, attenuation), gen1)

-- Metal

data MAT_Metal = MAT_Metal {
  albedo_Metal :: V3 Double,
  fuzz :: Double
} deriving (Show)

instance Material MAT_Metal where
  make_shared = Inj2 -: Inj1
  scatter this r_in record gen =
    let
      (rand1, gen1) = random_in_unit_sphere gen
      reflected = reflect (normalize $ dir r_in) (normal record)
      scattered = Ray{orig = p record, dir = reflected + (fuzz this) *^ rand1}
      attenuation = albedo_Metal this
    in
      if (dir scattered `dot` normal record) > 0 then
        (Just (scattered, attenuation), gen1)
      else
        (Nothing, gen1)


-- Dielectric

data MAT_Dielectric = MAT_Dielectric {
  ref_idx :: Double
} deriving (Show)

instance Material MAT_Dielectric where
  make_shared = Inj2
  scatter this r_in record gen =
    let
      attenuation = V3 1 1 1
      eta_over_eta' = if front_face record then 1 / ref_idx this else ref_idx this
      unit_direction = normalize $ dir r_in
      cos_theta = min (-unit_direction `dot` normal record) 1
      sin_theta = sqrt $ 1 - cos_theta ^ 2
    in
      if eta_over_eta' * sin_theta > 1 then
        let
          reflected = reflect unit_direction (normal record)
          scattered = Ray{orig = p record, dir = reflected}
        in
          (Just (scattered, attenuation), gen)
      else
        let
          reflect_prob = schlick cos_theta eta_over_eta'
          (rand1, gen1) = random gen
        in
          if rand1 < reflect_prob then
            let
              reflected = reflect unit_direction (normal record)
              scattered = Ray{orig = p record, dir = reflected}
            in
              (Just (scattered, attenuation), gen1)
          else
            let
              refracted = refract unit_direction (normal record) eta_over_eta'
              scattered = Ray{orig = p record, dir = refracted}
            in
              (Just (scattered, attenuation), gen1)


-- Diagrammatic-order composition
(-:) = flip (.)

-- Sum objects and injections
data (+) a b = Inj1 a | Inj2 b

instance (Show a, Show b) => Show (a + b) where
  show = coPair(show -: (++ ";inj1"), show -: (++ ";inj2"))

-- Dual to pairs
coPair :: (a1 -> b, a2 -> b) -> (a1 + a2 -> b)
coPair (f, g) x = case x of
  Inj1 x -> f x
  Inj2 x -> g x