雑記帳
僕用勉強ノート 「レイトレーシング」の巻

Haskell でレイトレーシングのチュートリアルを追いかける その15 - 最終レンダリング

遂に本編の最終ポイントとなる画像生成に到達したー!!
メインプログラムは前回のものと基本的に同じで、空間内にボールをランダムに配置する処理を追加したくらいの変更だけだったけど、それだけで生成画像がスゴいことになった!!!
コードの実行結果
実行結果
余談
最初は小さなボールを全てトーラスに置き換えて描画してみようかなと考えていたけど
  • パフォーマンスを考慮しないコーディングを Haskell で行っている (i.e. C/C++ で書かれたものと比べたら圧倒的に遅いはず)
  • 球面ですらなかなか時間がかかっている中、球面と比較してかなり計算コストの高いトーラスで全て置き換えたら処理に要する時間がとんでもないことになりそう
  • そもそもトーラスに置き換えるとなると、レイに対する反射や屈折を追跡する最大回数を多くする必要もありそうだし、そうなると更に時間がかかることになる
など色々あって、大きなボールだけをトーラスにするくらいが現実的かなという結論に行きついた。
因みにこの設定でも出力画像を得るのにかなりの時間がかかった。(厳密に測定したわけではないけど、実行開始時の大体の時刻と画像ファイルの最終更新時刻から考えて、3時間半程かかっている。)
通常のリアルタイム3DCGで用いられる描画テクだと透明のドーナツをリアルに描画するのって難しそうだけど、こんなにも綺麗に描画できるレイトレ素晴らしい。
参照
既に何度もリンクを貼っているけど、今回は「本編の最後」という切りの良いタイミングということで、再度リンクを貼り付けておく。
めっちゃ楽しかったので、興味ある人は是非!
ソースコード
{-# LANGUAGE TypeOperators #-}

module Main where

import Data.Complex
import Control.Monad.Fix
import Control.Lens
import System.Random
import Linear.Vector
import Linear.Metric
import Linear.V3

-- https://raytracing.github.io/books/RayTracingInOneWeekend.html

main :: IO ()
main = do
  let
    -- Image
    aspect_ratio = 3 / 2
    image_width = 1200
    image_height = round $ fromIntegral image_width / aspect_ratio
    samples_per_pixel = 500
    max_depth = 100
    -- World
    world  = random_scene
    -- Camera
    lookfrom      = V3 13 (-3) 2
    lookat        = V3 0 0 0
    dist_to_focus = norm $ lookat - lookfrom
    aperture      = 0.1
    camera = cam(lookfrom, lookat, V3 0 0 1, 20, aspect_ratio, aperture, dist_to_focus)
    img_data = "P3\n" ++ show image_width ++ " " ++ show image_height ++ "\n255\n"

  putStr $ img_data

  foldr (>>) (return ()) $ do
    let
      indices = [image_height - 1, image_height - 2 .. 0] `prod` [0 .. image_width - 1]
      seeds = (randomRs (0, 536870912) (mkStdGen 21) :: [Int])
    ((j,i), seed) <- zip indices seeds
    return $ do
        let
          pixcel_color = getColor(0, 0, mkStdGen seed)
          getColor = fix $ \rec (s, pixcel_color', gen_current) -> do
            let
              (randNum1, gen1) = random gen_current
              (randNum2, gen2) = random gen1
              u = (fromIntegral i + randNum1) / (fromIntegral image_width - 1.0)
              v = (fromIntegral j + randNum2) / (fromIntegral image_height - 1.0)
              (r,gen3) = get_ray camera (u, v) gen2
              (d,gen4) = ray_color r world max_depth gen3
            if s < samples_per_pixel then
              rec(succ s, pixcel_color' + d, gen4)
            else
              pixcel_color'
        write_color pixcel_color samples_per_pixel


random_scene :: [HittableData]
random_scene =
  let
    k = 2*11
    numOfUsedRndsPerLoop = 13
    rnds = randoms (mkStdGen 210) :: [Double]
    tinyBalls = do
      i <- [0..k-1]
      j <- [0..k-1]
      let
        a = fromIntegral $ i - k `div` 2
        b = fromIntegral $ j - k `div` 2
        rnd idx = rnds !! (numOfUsedRndsPerLoop*(k*i + j) + idx)

        choose_mat = rnd(0)
        c = vec3(a + 0.9*rnd(1), b + 0.9*rnd(2), 0.2)

      if ((norm $ c - vec3(4, 0.2, 0)) > 0.9) then
        if choose_mat < 0.8 then

          let
            albedo   = vec3(rnd(3)*rnd(6),rnd(4)*rnd(7),rnd(5)*rnd(8))
            material = make_shared $ MAT_Lambertian {albedo_Lamb = albedo}
          in
            return $ toSum $ RT_Sphere{
              center = c,
              radius = 0.2,
              mat_Sphere = material
            }
        else if choose_mat < 0.95 then

          let
            albedo = vec3((fmap $ unitTo(0.5,1)) $ (rnd(9), rnd(10), rnd(11)))
            fuzz'  = unitTo(0,0.5) $ rnd(12)
            material = make_shared $ MAT_Metal {albedo_Metal = albedo, fuzz = fuzz'}
          in
            return $ toSum $ RT_Sphere{
              center = c,
              radius = 0.2,
              mat_Sphere = material
            }
        else

          let
            material = make_shared $ MAT_Dielectric {ref_idx = 1.5}
          in
            return $ toSum $ RT_Sphere{
              center = c,
              radius = 0.2,
              mat_Sphere = material
            }
      else
        []

    material_ground = make_shared $ MAT_Lambertian {albedo_Lamb = V3 0.5 0.5 0.5}    
    material1  = make_shared $ MAT_Dielectric {ref_idx = 1.5}
    material2  = make_shared $ MAT_Lambertian {albedo_Lamb = V3 0.4 0.2 0.1}
    material3  = make_shared $ MAT_Metal {albedo_Metal = V3 0.7 0.6 0.5, fuzz = 0.0}

    ground  = toSum  $ RT_Sphere{center = V3 0 1 (-1000), radius = 1000, mat_Sphere = material_ground}
    bigDonut1 = toSum $ RT_Torus{
      centerOfTorus = vec3(0,  0, 1),
      majorRadius = 0.75,
      minorRadius = 0.25,
      orientationOfTorus = normalize $ V3 0.5 0.3 1.0,
      mat_Torus = material1
    }
    bigDonut2 = toSum $ RT_Torus{
      centerOfTorus = vec3(-4, 0, 1),
      majorRadius = 0.75,
      minorRadius = 0.25,
      orientationOfTorus = normalize $ V3 0.4 (-1.5) 1.0,
      mat_Torus = material2
    }
    bigDonut3 = toSum $ RT_Torus{
      centerOfTorus = vec3(4,  0, 1),
      majorRadius = 0.75,
      minorRadius = 0.25,
      orientationOfTorus = normalize $ V3 (-0.7) (-0.7) 0.9,
      mat_Torus = material3
    }

  in
    [ground, bigDonut1, bigDonut2, bigDonut3] ++ tinyBalls
  where
    vec3(x1,x2,x3) = V3 x1 x2 x3
    unitTo (a,b) x = a + (b-a)*x


data Ray = Ray {
  orig :: V3 Double,
  dir :: V3 Double
} deriving (Show)


at' :: Ray -> Double -> V3 Double
at' r t = (orig r) + t *^ (dir r)

data Camera = Camera {
  viewport_height :: Double,
  viewport_width :: Double,
  focal_length :: Double,
  origin :: V3 Double,
  horizontal :: V3 Double,
  vertical :: V3 Double,
  lower_left_corner :: V3 Double,
  axis_u :: V3 Double,
  axis_v :: V3 Double,
  axis_w :: V3 Double,
  lens_radius :: Double
} deriving (Show)

cam (lookfrom,lookat,vup,vfov,aspect_ratio,aperture,focus_dist) =
  Camera {
    viewport_height   = viewport_height',
    viewport_width    = viewport_width',
    origin            = origin',
    horizontal        = horizontal',
    vertical          = vertical',
    lower_left_corner = lower_left_corner',
    axis_u            = u,
    axis_v            = v,
    axis_w            = w,
    lens_radius       = lens_radius'
  }
  where
    theta = deg2rad(vfov)
    h     = tan(theta/2)
    viewport_height'   = 2.0 * h
    viewport_width'    = aspect_ratio * viewport_height'

    w = normalize $ lookat - lookfrom
    u = normalize $ w `cross` vup
    v = u `cross` w

    origin'            = lookfrom
    horizontal'        = (focus_dist * viewport_width') *^ u
    vertical'          = (focus_dist * viewport_height') *^ v
    lower_left_corner' =
      origin' - horizontal' ^/2 - vertical' ^/2
      + focus_dist *^ w
    lens_radius' = aperture / 2

get_ray :: Camera -> (Double, Double) -> StdGen -> (Ray, StdGen)
get_ray this (s, t) gen0 = (r,gen1)
  where
    (in_unit_disk, gen1) = random_in_unit_sphere gen0
    rd = lens_radius this *^ in_unit_disk
    offset = (rd ^._x) *^ axis_u this + (rd ^._y) *^ axis_v this
    r =
      Ray {
        orig = origin this + offset,
        dir = lower_left_corner this + s *^ horizontal this + t *^ vertical this - (origin this + offset)
      }

type HittableData = (RT_Sphere + RT_Torus) + RT_Sphere

class Hittable a where
  toSum :: a -> HittableData
  hit :: a -> Ray -> Double -> Double -> Maybe HitRecord

instance (Hittable a, Hittable b) => Hittable (Either a b) where
  toSum = coPair(toSum, toSum)
  hit = coPair(hit, hit)

add :: Hittable a => [HittableData] -> a -> [HittableData]
add list obj = (toSum obj) : list

data HitRecord = HitRecord {
  p :: V3 Double,
  normal :: V3 Double,
  mat :: MaterialData,
  t :: Double,
  front_face :: Bool
} deriving (Show)


set_face_normal :: HitRecord -> Ray -> V3 Double -> HitRecord
set_face_normal this r outward_normal = HitRecord {
  p = p this,
  normal = if dir r `dot` outward_normal < 0 then outward_normal else -outward_normal,
  t = t this,
  front_face = (dir r `dot` outward_normal < 0),
  mat = mat this
  }

hitSomething :: [HittableData] -> Ray -> Double -> Double -> Maybe HitRecord
hitSomething list r t_min t_max =
  let
    f (list', r', closest_so_far, currentRecord) =
      case list' of
        x:xs ->
          let temp = hit x r' t_min closest_so_far in
            case temp of
              Just a ->
                f $ (xs, r', t a, temp)
              Nothing ->
                f $ (xs, r', closest_so_far, currentRecord)
        [] ->
          currentRecord

  in
    f $ (list, r, t_max, Nothing)


----------------------
-- Hittable Objects --
----------------------

-- Sphere
data RT_Sphere = RT_Sphere {
  center :: V3 Double,
  radius :: Double,
  mat_Sphere :: MaterialData
} deriving (Show)

instance Hittable RT_Sphere where
  toSum = inj1 -: inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      c1 = center obj
      r1 = radius obj
      oc = p0 - c1
      a = quadrance (dir r)
      half_b = oc `dot` dir r
      c = quadrance oc - (radius obj) ^ 2
      discriminant = half_b ^ 2 - a*c in

      if discriminant > 0 then
        let
          root = sqrt discriminant
          f k =
            case k of
              x:xs ->
                if t_min < x && x < t_max then
                  return $ set_face_normal HitRecord {
                    p = at' r x,
                    normal = zero,
                    t = x,
                    front_face = False,
                    mat = mat_Sphere obj
                    } r ((at' r x - c1) ^/ r1)
                else
                  f $ xs

              [] ->
                Nothing

        in
          f $ [(-half_b - root) / a, (-half_b + root) / a]
      else
        Nothing

-- Torus
data RT_Torus = RT_Torus {
  centerOfTorus :: V3 Double,
  majorRadius :: Double,
  minorRadius :: Double,
  orientationOfTorus :: V3 Double,
  mat_Torus :: MaterialData
} deriving (Show)

instance Hittable RT_Torus where
  toSum = inj2 -: inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      a  = dir r
      a_norm = norm a
      c1 = centerOfTorus obj
      r1 = majorRadius obj
      r2 = minorRadius obj
      n = orientationOfTorus obj
      s = getIntersection_forTorus (p0,a,c1,r1,r2,n)
      oc = p0 - c1
      a_sq  = quadrance (dir r)
      half_b = oc `dot` dir r
      c = quadrance oc - (r1 + r2 + 0.01) ^ 2
      discriminant = half_b ^ 2 - a_sq*c
    in
      if discriminant > 0 then
        if null s then
          Nothing
        else
          let
            k = minimum s
            x = at' r k - c1
          in
            if t_min < k && k < t_max then
              return $ set_face_normal HitRecord {
                p = c1 + x,
                normal = zero,
                t = k,
                front_face = False,
                mat = mat_Torus obj
              } r ((x - (r1 *^ (normalize $ x - (n `dot` x) *^ n))) ^/ r2)

            else
              Nothing
      else
        Nothing


write_color :: V3 Double -> Int -> IO ()
write_color (V3 r g b) spp =
  let
    v' = V3 (sqrt $ r / fromIntegral spp) (sqrt $ g / fromIntegral spp) (sqrt $ b / fromIntegral spp)
    f = show.floor.(256*).(clamp 0 0.999)
  in
    putStr $ f(v' ^._x) ++ " " ++ f(v' ^._y) ++ " " ++ f(v' ^._z) ++ "\n"

ray_color :: Ray -> [HittableData] -> Int -> StdGen -> (V3 Double, StdGen)
ray_color r objects depth gen =
  if depth <= 0 then
    (zero, gen)
  else
    let
      record = hitSomething objects r 0.001 infinity
    in
      case record of

        Just record' ->
          let
            (ret, gen1) = scatter (mat record') r record' gen
          in
            case ret of
              Just (scattered, attenuation) ->
                let
                  (col_t , gen_t) = ray_color scattered objects (pred depth) gen1
                in
                  (attenuation * col_t , gen_t)

              Nothing ->
                (zero, gen1)

        Nothing ->
          let
            unit_direction = normalize $ (dir r)
            s = 0.5 * (unit_direction ^._z + 1.0)
          in
            (lerp s (V3 0.5 0.7 1.0) (V3 1.0 1.0 1.0), gen)


--------------------
-- Random numbers --
--------------------

random_in_unit_sphere :: StdGen -> (V3 Double, StdGen)
random_in_unit_sphere gen0 =
  let
    (rand1,gen1) = randomR (-1, 1) gen0 :: (Double, StdGen)
    (rand2,gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    (rand3,gen3) = randomR (-1, 1) gen2 :: (Double, StdGen)
    v = V3 rand1 rand2 rand3
  in
    if quadrance v >= 1 then
      random_in_unit_sphere gen3
    else
      (v, gen3)

random_unit_vector :: StdGen -> (V3 Double, StdGen)
random_unit_vector gen0 =
  let
    (a, gen1) = randomR (0, 2*pi) gen0 :: (Double, StdGen)
    (z, gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    r = sqrt $ 1 - z^2
  in
    (V3 (r*cos(a)) (r*sin(a)) z, gen2)


random_in_hemisphere :: V3 Double -> StdGen -> (V3 Double, StdGen)
random_in_hemisphere normal gen0 =
  let
    (in_unit_sphere, gen1) = random_in_unit_sphere gen0
  in
    if in_unit_sphere `dot` normal > 0 then
      (in_unit_sphere, gen1)
    else
      (-in_unit_sphere, gen1)

random_in_unit_disk :: StdGen -> (V3 Double, StdGen)
random_in_unit_disk gen0 =
  let
    (rand1,gen1) = randomR (-1, 1) gen0 :: (Double, StdGen)
    (rand2,gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    v = V3 rand1 rand2 0
  in
    if quadrance v >= 1 then
      random_in_unit_sphere gen2
    else
      (v, gen2)


---------------
-- Utilities --
---------------

infinity :: RealFloat a => a
infinity = encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0)

deg2rad :: Floating a => a -> a
deg2rad degrees = degrees * pi / 180

clamp :: (Ord a, Num a) => a -> a -> a -> a
clamp x y val = (max x).(min y) $ val

reflect :: V3 Double -> V3 Double -> V3 Double
reflect v n = v - (2 * (n `dot` v)) *^ n

refract :: V3 Double -> V3 Double -> Double -> V3 Double
refract uv n eta_over_eta' =
  r_out_perp + r_out_parallel
  where
    cos_theta = min 1 ((-uv) `dot` n)
    r_out_perp = eta_over_eta' *^ (uv + cos_theta *^ n)
    r_out_parallel = (sqrt $ abs (1 - quadrance r_out_perp)) *^ (-n)

reflectance :: Double -> Double -> Double
reflectance cosine ref_idx =
  let
    r0 = ((1 - ref_idx) / (1 + ref_idx)) ^ 2
  in
    r0 + (1-r0) * (1 - cosine) ^ 5

near_zero (V3 r1 r2 r3) =
  (abs(r1) < s) && (abs(r2) < s) && (abs(r3) < s)
  where
    s = 1.0E-7

--------------------
-- Material Class --
--------------------

type MaterialData = (MAT_Lambertian + MAT_Metal) + MAT_Dielectric

class Material a where
  make_shared :: a -> MaterialData
  scatter :: a -> Ray -> HitRecord -> StdGen -> (Maybe (Ray, V3 Double), StdGen)

instance (Material a, Material b) => Material (Either a b) where
  make_shared = coPair(make_shared, make_shared)
  scatter = coPair(scatter, scatter)


-- Lambertian

data MAT_Lambertian = MAT_Lambertian {
  albedo_Lamb :: V3 Double
} deriving (Show)

instance Material MAT_Lambertian where
  make_shared = inj1 -: inj1
  scatter this r_in record gen =
    let
      (rand1, gen1) = random_unit_vector gen
      scattered_direction =
        if near_zero(normal record + rand1) then
          normal record
        else
          normal record + rand1
      scattered = Ray{orig = p record, dir = scattered_direction}
      attenuation = albedo_Lamb this
    in
      (Just (scattered, attenuation), gen1)

-- Metal

data MAT_Metal = MAT_Metal {
  albedo_Metal :: V3 Double,
  fuzz :: Double
} deriving (Show)

instance Material MAT_Metal where
  make_shared = inj2 -: inj1
  scatter this r_in record gen =
    let
      (rand1, gen1) = random_in_unit_sphere gen
      reflected = reflect (normalize $ dir r_in) (normal record)
      scattered = Ray{orig = p record, dir = reflected + (fuzz this) *^ rand1}
      attenuation = albedo_Metal this
    in
      if (dir scattered `dot` normal record) > 0 then
        (Just (scattered, attenuation), gen1)
      else
        (Nothing, gen1)

-- Dielectric

data MAT_Dielectric = MAT_Dielectric {
  ref_idx :: Double
} deriving (Show)

instance Material MAT_Dielectric where
  make_shared = inj2
  scatter this r_in record gen =
    let
      (rand1, gen1) = random gen
      attenuation = V3 1 1 1
      eta_over_eta' = if front_face record then 1 / ref_idx this else ref_idx this
      unit_direction = normalize $ dir r_in
      cos_theta = min 1 (-unit_direction `dot` normal record)
      sin_theta = sqrt $ 1 - cos_theta ^ 2
      cannot_refract = eta_over_eta' * sin_theta > 1
    in
      if cannot_refract || (reflectance cos_theta eta_over_eta' > rand1) then
        let
          reflected = reflect unit_direction (normal record)
          scattered = Ray{orig = p record, dir = reflected}
        in
          (Just (scattered, attenuation), gen1)
      else
        let
          refracted = refract unit_direction (normal record) eta_over_eta'
          scattered = Ray{orig = p record, dir = refracted}
        in
          (Just (scattered, attenuation), gen)




getIntersection_forTorus :: (V3 Double, V3 Double, V3 Double, Double, Double, V3 Double) -> [Double]
getIntersection_forTorus = solveQuarticEq . genCoefficients

genCoefficients (x0,a,c,r1,r2,n) = (b4,b3,b2,b1,b0)
  where
    d0 = x0 - c
    k = (r1^2) - (r2^2)
    a_sq = quadrance a
    d0_sq = quadrance d0

    b4 = a_sq^2                                       
    b3 = 4*(d0 `dot` a)*a_sq                          
    b2 = 2*d0_sq*a_sq+4*((d0 `dot` a)^2) + 2*k*a_sq - 4*(r1^2)*a_sq         + 4*(r1^2)*(n `dot` a)^2
    b1 = 4*d0_sq*(d0 `dot` a)+4*k*(d0 `dot` a)      - 8*(r1^2)*(d0 `dot` a) + 8*(r1^2)*(n `dot` d0)*(n `dot` a)
    b0 = d0_sq*d0_sq+2*k*d0_sq+k^2                  - 4*(r1^2)*d0_sq        + 4*(r1^2)*(n `dot` d0)^2

solveQuarticEq (a4,a3,a2,a1,a0) =
  let
    sol = do
      (x_Re :+ x_Im) <- [x1,x2,x3,x4]
      if (abs(x_Im) < 1.0E-8) && (1.0E-8 <= x_Re) then
        return x_Re
      else
        []
  in
    sol
  where
    l1 = (toCmp $ k3/4)/sqrt(k4)
    l2 = (toCmp $ (cbrt(2)*k5)/(3*a4))/k8 + k8/(toCmp $ 3*cbrt(2)*a4)
    l3 = (toCmp $ (a3^2)/(2*a4^2) - (4*a2)/(3*a4)) - l2
    k1 = l1 + l3
    k2 = -l1 + l3
    k3 = -((a3/a4)^3) + (4*a2*a3)/(a4^2) - (8*a1)/a4
    k4 = (toCmp $ ((a3/(2*a4))^2) - (2*a2)/(3*a4)) + l2
    k5 = a2^2 - 3*a1*a3 + 12*a0*a4
    k6 = 2*a2^3 - 9*a1*a2*a3 + 27*a0*a3^2 + 27*a1^2*a4 - 72*a0*a2*a4
    k7 = -4*k5^3 + k6^2
    k8 = cbrt((toCmp $ k6) + sqrt(toCmp $ k7))

    l4 = toCmp $ -a3/(4*a4)
    l5 = sqrt(k2)/2
    l6 = sqrt(k1)/2
    l7 = sqrt(k4)/2

    x1 = l4 - l5 - l7
    x2 = l4 + l5 - l7
    x3 = l4 - l6 + l7
    x4 = l4 + l6 + l7

cbrt x = x ** (1/3)
toCmp x = x :+ 0
prod x y = x >>= (\u -> zip (repeat u) y)

(-:) = flip (.)

type (+)  a b = Either a b

inj1 :: a -> a + b
inj1 = Left

inj2 :: b -> a + b
inj2 = Right

coPair :: (a1 -> b, a2 -> b) -> (a1 + a2 -> b)
coPair = uncurry either