雑記帳
Haskell でレイトレーシングのチュートリアルを追いかける その11 - 拡散 (修正版)
修正版の作成の続きとして、セクション8の内容のやり直しを行った。
下の実行結果となる画像を見た限りだと、数値解析によるアプローチで進めていた際に行き詰ったポイントであった「黒ポチ」の問題が解消している!
これなら最終セクションまで辿り着けそうな気がしてきた。(他の厄介な問題が浮上してこないといいな)
コードの実行結果
ソースコード
{-# LANGUAGE TypeOperators #-}
module Main where
import Data.Complex
import Control.Monad.Fix
import Control.Lens
import System.Random
import Linear.Vector
import Linear.Metric
import Linear.V3
-- https://raytracing.github.io/books/RayTracingInOneWeekend.html
-- section 8-1 Simple Diffuse Materials with Haskell
main :: IO ()
main = do
let
-- Image
aspect_ratio = 16.0 / 9
image_width = 512
image_height = round $ fromIntegral image_width / aspect_ratio
samples_per_pixel = 100
max_depth = 100
-- World
world = []
--`add` RT_Sphere{center = V3 0.0 (-1.0) 0.0, radius = 0.5, mat_Sphere = material_center}
--`add` RT_Sphere{center = V3 (-0.95) (-1.0) 0.0, radius = 0.5, mat_Sphere = material_left}
--`add` RT_Sphere{center = V3 1.05 (-1.0) 0.0, radius = 0.5, mat_Sphere = material_right}
`add` RT_Torus{
centerOfTorus = V3 (-0.55) (-2.1) 0.0,
majorRadius = 0.4,
minorRadius = 0.1,
orientationOfTorus = normalize $ V3 0.5 1.5 1.0
}
`add` RT_Torus{
centerOfTorus = V3 1.05 (-1.0) 0.0,
majorRadius = 0.3,
minorRadius = 0.2,
orientationOfTorus = normalize $ V3 (-0.5) (-3) (-0.2)
}
`add` RT_Sphere{center = V3 (-3.51) (-5.9) 2.4, radius = 2.9}
`add` RT_Torus{
centerOfTorus = V3 3.51 (-6.1) 3.5,
majorRadius = 2.7,
minorRadius = 0.7,
orientationOfTorus = normalize $ V3 0 1 0.4
}
`add` RT_Torus{
centerOfTorus = V3 0.05 (-1.2) 0.2,
majorRadius = 0.35,
minorRadius = 0.15,
orientationOfTorus = normalize $ V3 (-0.5) 1.9 1.2
}
`add` RT_Sphere{center = V3 0 (-1) (-10000.5), radius = 10000}
-- Camera
camera = Camera {
viewport_height = 2.0,
viewport_width = aspect_ratio * viewport_height camera,
focal_length = 1.0,
origin = zero,
horizontal = viewport_width camera *^ unit _x,
vertical = viewport_height camera *^ unit _z,
lower_left_corner =
origin camera - horizontal camera ^/2 - vertical camera ^/2
- focal_length camera *^ unit _y
}
img_data = "P3\n" ++ show image_width ++ " " ++ show image_height ++ "\n255\n"
putStr $ img_data
foldr (>>) (return ()) $ do
let
indices = [image_height - 1, image_height - 2 .. 0] `prod` [0 .. image_width - 1]
seeds = (randomRs (0, 536870912) (mkStdGen 21) :: [Int])
((j,i), seed) <- zip indices seeds
return $ do
let
rnds = myRandoms (2*samples_per_pixel) (mkStdGen seed)
pixcel_color = foldr (+) 0 $ do
s <- [0 .. samples_per_pixel - 1]
let
(randNum1, _) = rnds !! (2*s + 0)
(randNum2, gen2) = rnds !! (2*s + 1)
u = (fromIntegral i + randNum1) / (fromIntegral image_width - 1.0)
v = (fromIntegral j + randNum2) / (fromIntegral image_height - 1.0)
r = get_ray camera (u, v)
return $ ray_color r world max_depth gen2
write_color pixcel_color samples_per_pixel
myRandoms :: RandomGen g => Int -> g -> [(Double,g)]
myRandoms num gen = f(0,[],gen)
where
f = fix $ \rec (i,xs,gen_current) ->
if i < num then
let
x@(next, gen_new) = random gen_current
in
rec (succ i, x:xs, gen_new)
else
xs
---------------------
-- A Ray Data Type --
---------------------
data Ray = Ray {
orig :: V3 Double,
dir :: V3 Double
} deriving (Show)
at' :: Ray -> Double -> V3 Double
at' r t = (orig r) + t *^ (dir r)
------------------------
-- A Camera Data Type --
------------------------
data Camera = Camera {
viewport_height :: Double,
viewport_width :: Double,
focal_length :: Double,
origin :: V3 Double,
horizontal :: V3 Double,
vertical :: V3 Double,
lower_left_corner :: V3 Double
} deriving (Show)
get_ray :: Camera -> (Double, Double) -> Ray
get_ray this (u, v) =
Ray {
orig = origin this,
dir = lower_left_corner this + u *^ horizontal this + v *^ vertical this - origin this
}
----------------------
-- A Hittable Class --
----------------------
type HittableData = (RT_Sphere + RT_Torus) + RT_Sphere
class Hittable a where
toSum :: a -> HittableData
hit :: a -> Ray -> Double -> Double -> Maybe HitRecord
instance (Hittable a, Hittable b) => Hittable (Either a b) where
toSum = coPair(toSum, toSum)
hit = coPair(hit, hit)
add :: Hittable a => [HittableData] -> a -> [HittableData]
add list obj = (toSum obj) : list
data HitRecord = HitRecord {
p :: V3 Double,
normal :: V3 Double,
t :: Double,
front_face :: Bool
} deriving (Show)
set_face_normal :: HitRecord -> Ray -> V3 Double -> HitRecord
set_face_normal this r outward_normal =
let
isOutside = (dir r `dot` outward_normal) < 0
in
HitRecord {
p = p this,
front_face = isOutside,
normal = if isOutside then outward_normal else -outward_normal,
t = t this
}
hitSomething :: [HittableData] -> Ray -> Double -> Double -> Maybe HitRecord
hitSomething list r t_min t_max =
let
f (list', r', closest_so_far, currentRecord) =
case list' of
x:xs ->
let
temp = hit x r' t_min closest_so_far
in
case temp of
Just a ->
f $ (xs, r', t a, temp)
Nothing ->
f $ (xs, r', closest_so_far, currentRecord)
[] ->
currentRecord
in
f $ (list, r, t_max, Nothing)
----------------------
-- Hittable Objects --
----------------------
-- Sphere
data RT_Sphere = RT_Sphere {
center :: V3 Double,
radius :: Double
} deriving (Show)
instance Hittable RT_Sphere where
toSum = inj1 -: inj1
hit obj r t_min t_max =
let
p0 = orig r
c1 = center obj
r1 = radius obj
oc = p0 - c1
a = quadrance (dir r)
half_b = oc `dot` dir r
c = quadrance oc - (radius obj) ^ 2
discriminant = half_b ^ 2 - a*c in
if discriminant > 0 then
let
root = sqrt discriminant
f k =
case k of
x:xs ->
if t_min < x && x < t_max then
return $ set_face_normal HitRecord {
p = at' r x,
normal = zero,
t = x,
front_face = False
} r ((at' r x - c1) ^/ r1)
else
f $ xs
[] ->
Nothing
in
f $ [(-half_b - root) / a, (-half_b + root) / a]
else
Nothing
-- Torus
data RT_Torus = RT_Torus {
centerOfTorus :: V3 Double,
majorRadius :: Double,
minorRadius :: Double,
orientationOfTorus :: V3 Double
} deriving (Show)
instance Hittable RT_Torus where
toSum = inj2 -: inj1
hit obj r t_min t_max =
let
p0 = orig r
a = dir r
a_norm = norm a
c1 = centerOfTorus obj
r1 = majorRadius obj
r2 = minorRadius obj
n = orientationOfTorus obj
s = getIntersection_forTorus (p0,a,c1,r1,r2,n)
oc = p0 - c1
a_sq = quadrance (dir r)
half_b = oc `dot` dir r
c = quadrance oc - (r1 + r2 + 0.01) ^ 2
discriminant = half_b ^ 2 - a_sq*c
in
if discriminant > 0 then
if null s then
Nothing
else
let
k = minimum s
x = at' r k - c1
in
if t_min < k && k < t_max then
return $ set_face_normal HitRecord {
p = c1 + x,
normal = zero,
t = k,
front_face = False
} r ((x - (r1 *^ (normalize $ x - (n `dot` x) *^ n))) ^/ r2)
else
Nothing
else
Nothing
write_color :: V3 Double -> Int -> IO ()
write_color (V3 r g b) spp =
let
v' = V3 (sqrt $ r / fromIntegral spp) (sqrt $ g / fromIntegral spp) (sqrt $ b / fromIntegral spp)
f = show.floor.(256*).(clamp 0 0.999)
in
putStr $ f(v' ^._x) ++ " " ++ f(v' ^._y) ++ " " ++ f(v' ^._z) ++ "\n"
ray_color :: Ray -> [HittableData] -> Int -> StdGen -> V3 Double
ray_color r objects depth gen =
if depth <= 0 then
zero
else
let
record = hitSomething objects r 0.0001 infinity
in
case record of
Just record' ->
let
(rand1, gen1) = random_in_unit_sphere gen
target = (p record' + normal record' + rand1)
in
0.5 *^ ray_color Ray{orig = p record', dir = target - p record'} objects (pred depth) gen1
Nothing ->
let
unit_direction = normalize $ (dir r)
s = 0.5 * (unit_direction ^._z + 1.0)
in lerp s (V3 0.5 0.7 1.0) (V3 1.0 1.0 1.0)
random_in_unit_sphere :: StdGen -> (V3 Double, StdGen)
random_in_unit_sphere gen0 =
let
(rand1,gen1) = randomR (-1, 1) gen0 :: (Double, StdGen)
(rand2,gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
(rand3,gen3) = randomR (-1, 1) gen2 :: (Double, StdGen)
v = V3 rand1 rand2 rand3
in
if quadrance v >= 1 then
random_in_unit_sphere gen3
else
(v, gen3)
random_unit_vector :: StdGen -> (V3 Double, StdGen)
random_unit_vector gen0 =
let
(a, gen1) = randomR (0, 2*pi) gen0 :: (Double, StdGen)
(z, gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
r = sqrt $ 1 - z^2
in
(V3 (r*cos(a)) (r*sin(a)) z, gen2)
random_in_hemisphere :: V3 Double -> StdGen -> (V3 Double, StdGen)
random_in_hemisphere normal gen0 =
let
(in_unit_sphere, gen1) = random_in_unit_sphere gen0
in
if in_unit_sphere `dot` normal > 0 then
(in_unit_sphere, gen1)
else
(-in_unit_sphere, gen1)
infinity :: RealFloat a => a
infinity = encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0)
deg2rad :: Floating a => a -> a
deg2rad degrees = degrees * pi / 180
clamp :: (Ord a, Num a) => a -> a -> a -> a
clamp x y val = (max x).(min y) $ val
getIntersection_forTorus :: (V3 Double, V3 Double, V3 Double, Double, Double, V3 Double) -> [Double]
getIntersection_forTorus = solveQuarticEq . genCoefficients
genCoefficients (x0,a,c,r1,r2,n) = (b4,b3,b2,b1,b0)
where
d0 = x0 - c
k = (r1^2) - (r2^2)
a_sq = quadrance a
d0_sq = quadrance d0
b4 = a_sq^2
b3 = 4*(d0 `dot` a)*a_sq
b2 = 2*d0_sq*a_sq+4*((d0 `dot` a)^2) + 2*k*a_sq - 4*(r1^2)*a_sq + 4*(r1^2)*(n `dot` a)^2
b1 = 4*d0_sq*(d0 `dot` a)+4*k*(d0 `dot` a) - 8*(r1^2)*(d0 `dot` a) + 8*(r1^2)*(n `dot` d0)*(n `dot` a)
b0 = d0_sq*d0_sq+2*k*d0_sq+k^2 - 4*(r1^2)*d0_sq + 4*(r1^2)*(n `dot` d0)^2
solveQuarticEq (a4,a3,a2,a1,a0) =
let
sol = do
(x_Re :+ x_Im) <- [x1,x2,x3,x4]
if (abs(x_Im) < 1.0E-9) && (1.0E-9 <= x_Re) then
return x_Re
else
[]
in
sol
where
l1 = (toCmp $ k3/4)/sqrt(k4)
l2 = (toCmp $ (cbrt(2)*k5)/(3*a4))/k8 + k8/(toCmp $ 3*cbrt(2)*a4)
l3 = (toCmp $ (a3^2)/(2*a4^2) - (4*a2)/(3*a4)) - l2
k1 = l1 + l3
k2 = -l1 + l3
k3 = -((a3/a4)^3) + (4*a2*a3)/(a4^2) - (8*a1)/a4
k4 = (toCmp $ ((a3/(2*a4))^2) - (2*a2)/(3*a4)) + l2
k5 = a2^2 - 3*a1*a3 + 12*a0*a4
k6 = 2*a2^3 - 9*a1*a2*a3 + 27*a0*a3^2 + 27*a1^2*a4 - 72*a0*a2*a4
k7 = -4*k5^3 + k6^2
k8 = cbrt((toCmp $ k6) + sqrt(toCmp $ k7))
l4 = toCmp $ -a3/(4*a4)
l5 = sqrt(k2)/2
l6 = sqrt(k1)/2
l7 = sqrt(k4)/2
x1 = l4 - l5 - l7
x2 = l4 + l5 - l7
x3 = l4 - l6 + l7
x4 = l4 + l6 + l7
cbrt x = x ** (1/3)
toCmp x = x :+ 0
prod x y = x >>= (\u -> zip (repeat u) y)
(-:) = flip (.)
type (+) a b = Either a b
inj1 :: a -> a + b
inj1 = Left
inj2 :: b -> a + b
inj2 = Right
coPair :: (a1 -> b, a2 -> b) -> (a1 + a2 -> b)
coPair = uncurry either
タグ一覧: