雑記帳
僕用勉強ノート 「レイトレーシング」の巻

Haskell でレイトレーシングのチュートリアルを追いかける その11 - 拡散 (修正版)

修正版の作成の続きとして、セクション8の内容のやり直しを行った。
下の実行結果となる画像を見た限りだと、数値解析によるアプローチで進めていた際に行き詰ったポイントであった「黒ポチ」の問題が解消している!
これなら最終セクションまで辿り着けそうな気がしてきた。(他の厄介な問題が浮上してこないといいな)
コードの実行結果
実行結果
ソースコード
{-# LANGUAGE TypeOperators #-}

module Main where

import Data.Complex
import Control.Monad.Fix
import Control.Lens
import System.Random
import Linear.Vector
import Linear.Metric
import Linear.V3

-- https://raytracing.github.io/books/RayTracingInOneWeekend.html
-- section 8-1 Simple Diffuse Materials with Haskell


main :: IO ()
main = do
  let
    -- Image
    aspect_ratio = 16.0 / 9
    image_width = 512
    image_height = round $ fromIntegral image_width / aspect_ratio
    samples_per_pixel = 100
    max_depth = 100
    -- World
    world = []
      --`add` RT_Sphere{center = V3 0.0 (-1.0) 0.0, radius = 0.5, mat_Sphere = material_center}
      --`add` RT_Sphere{center = V3 (-0.95) (-1.0) 0.0, radius = 0.5, mat_Sphere = material_left}
      --`add` RT_Sphere{center = V3 1.05 (-1.0) 0.0, radius = 0.5, mat_Sphere = material_right}
      `add` RT_Torus{
        centerOfTorus = V3 (-0.55) (-2.1) 0.0,
        majorRadius = 0.4,
        minorRadius = 0.1,
        orientationOfTorus = normalize $ V3 0.5 1.5 1.0
        }
      `add` RT_Torus{
        centerOfTorus = V3 1.05 (-1.0) 0.0,
        majorRadius = 0.3,
        minorRadius = 0.2,
        orientationOfTorus = normalize $ V3 (-0.5) (-3) (-0.2)
        }
      `add` RT_Sphere{center = V3 (-3.51) (-5.9) 2.4, radius = 2.9}
      `add` RT_Torus{
        centerOfTorus = V3 3.51 (-6.1) 3.5,
        majorRadius = 2.7,
        minorRadius = 0.7,
        orientationOfTorus = normalize $ V3 0 1 0.4
        }
      `add` RT_Torus{
        centerOfTorus = V3 0.05 (-1.2) 0.2,
        majorRadius = 0.35,
        minorRadius = 0.15,
        orientationOfTorus = normalize $ V3 (-0.5) 1.9 1.2
        }
      `add` RT_Sphere{center = V3 0 (-1) (-10000.5), radius = 10000}
    -- Camera
    camera = Camera {
      viewport_height = 2.0,
      viewport_width = aspect_ratio * viewport_height camera,
      focal_length = 1.0,
      origin = zero,
      horizontal = viewport_width camera *^ unit _x,
      vertical = viewport_height camera *^ unit _z,
      lower_left_corner =
        origin camera - horizontal camera ^/2 - vertical camera ^/2
        - focal_length camera *^ unit _y
      }
    img_data = "P3\n" ++ show image_width ++ " " ++ show image_height ++ "\n255\n"

  putStr $ img_data

  foldr (>>) (return ()) $ do
    let
      indices = [image_height - 1, image_height - 2 .. 0] `prod` [0 .. image_width - 1]
      seeds = (randomRs (0, 536870912) (mkStdGen 21) :: [Int])
    ((j,i), seed) <- zip indices seeds
    return $ do
        let
          rnds = myRandoms (2*samples_per_pixel) (mkStdGen seed)
          pixcel_color = foldr (+) 0 $ do
            s <- [0 .. samples_per_pixel - 1]
            let
              (randNum1, _)    = rnds !! (2*s + 0)
              (randNum2, gen2) = rnds !! (2*s + 1)
              u = (fromIntegral i + randNum1) / (fromIntegral image_width - 1.0)
              v = (fromIntegral j + randNum2) / (fromIntegral image_height - 1.0)
              r = get_ray camera (u, v)
            return $ ray_color r world max_depth gen2
        write_color pixcel_color samples_per_pixel

myRandoms :: RandomGen g => Int -> g -> [(Double,g)]
myRandoms num gen = f(0,[],gen)
  where
    f = fix $ \rec (i,xs,gen_current) ->
      if i < num then
        let
          x@(next, gen_new) = random gen_current
        in
          rec (succ i, x:xs, gen_new)
      else
        xs

---------------------
-- A Ray Data Type --
---------------------

data Ray = Ray {
  orig :: V3 Double,
  dir :: V3 Double
} deriving (Show)


at' :: Ray -> Double -> V3 Double
at' r t = (orig r) + t *^ (dir r)


------------------------
-- A Camera Data Type --
------------------------

data Camera = Camera {
  viewport_height :: Double,
  viewport_width :: Double,
  focal_length :: Double,
  origin :: V3 Double,
  horizontal :: V3 Double,
  vertical :: V3 Double,
  lower_left_corner :: V3 Double
} deriving (Show)

get_ray :: Camera -> (Double, Double) -> Ray
get_ray this (u, v) =
  Ray {
    orig = origin this,
    dir = lower_left_corner this + u *^ horizontal this + v *^ vertical this - origin this
    }


----------------------
-- A Hittable Class --
----------------------

type HittableData = (RT_Sphere + RT_Torus) + RT_Sphere

class Hittable a where
  toSum :: a -> HittableData
  hit :: a -> Ray -> Double -> Double -> Maybe HitRecord

instance (Hittable a, Hittable b) => Hittable (Either a b) where
  toSum = coPair(toSum, toSum)
  hit = coPair(hit, hit)

add :: Hittable a => [HittableData] -> a -> [HittableData]
add list obj = (toSum obj) : list

data HitRecord = HitRecord {
  p :: V3 Double,
  normal :: V3 Double,
  t :: Double,
  front_face :: Bool
} deriving (Show)


set_face_normal :: HitRecord -> Ray -> V3 Double -> HitRecord
set_face_normal this r outward_normal =
  let
    isOutside = (dir r `dot` outward_normal) < 0
  in
    HitRecord {
      p = p this,
      front_face = isOutside,
      normal = if isOutside then outward_normal else -outward_normal,
      t = t this
      }

hitSomething :: [HittableData] -> Ray -> Double -> Double -> Maybe HitRecord
hitSomething list r t_min t_max =
  let
    f (list', r', closest_so_far, currentRecord) =
      case list' of
        x:xs ->
          let
            temp = hit x r' t_min closest_so_far
          in
            case temp of
              Just a ->
                f $ (xs, r', t a, temp)
              Nothing ->
                f $ (xs, r', closest_so_far, currentRecord)
        [] ->
          currentRecord

  in
    f $ (list, r, t_max, Nothing)


----------------------
-- Hittable Objects --
----------------------

-- Sphere
data RT_Sphere = RT_Sphere {
  center :: V3 Double,
  radius :: Double
} deriving (Show)

instance Hittable RT_Sphere where
  toSum = inj1 -: inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      c1 = center obj
      r1 = radius obj
      oc = p0 - c1
      a = quadrance (dir r)
      half_b = oc `dot` dir r
      c = quadrance oc - (radius obj) ^ 2
      discriminant = half_b ^ 2 - a*c in

      if discriminant > 0 then
        let
          root = sqrt discriminant
          f k =
            case k of
              x:xs ->
                if t_min < x && x < t_max then
                  return $ set_face_normal HitRecord {
                    p = at' r x,
                    normal = zero,
                    t = x,
                    front_face = False
                    } r ((at' r x - c1) ^/ r1)
                else
                  f $ xs

              [] ->
                Nothing

        in
          f $ [(-half_b - root) / a, (-half_b + root) / a]
      else
        Nothing

-- Torus
data RT_Torus = RT_Torus {
  centerOfTorus :: V3 Double,
  majorRadius :: Double,
  minorRadius :: Double,
  orientationOfTorus :: V3 Double
} deriving (Show)

instance Hittable RT_Torus where
  toSum = inj2 -: inj1
  hit obj r t_min t_max =
    let
      p0 = orig r
      a  = dir r
      a_norm = norm a
      c1 = centerOfTorus obj
      r1 = majorRadius obj
      r2 = minorRadius obj
      n = orientationOfTorus obj
      s = getIntersection_forTorus (p0,a,c1,r1,r2,n)
      oc = p0 - c1
      a_sq  = quadrance (dir r)
      half_b = oc `dot` dir r
      c = quadrance oc - (r1 + r2 + 0.01) ^ 2
      discriminant = half_b ^ 2 - a_sq*c
    in
      if discriminant > 0 then
        if null s then
          Nothing
        else
          let
            k = minimum s
            x = at' r k - c1
          in
            if t_min < k && k < t_max then
              return $ set_face_normal HitRecord {
                p = c1 + x,
                normal = zero,
                t = k,
                front_face = False
                } r ((x - (r1 *^ (normalize $ x - (n `dot` x) *^ n))) ^/ r2)

            else
              Nothing
      else
        Nothing

write_color :: V3 Double -> Int -> IO ()
write_color (V3 r g b) spp =
  let
    v' = V3 (sqrt $ r / fromIntegral spp) (sqrt $ g / fromIntegral spp) (sqrt $ b / fromIntegral spp)
    f = show.floor.(256*).(clamp 0 0.999)
  in
    putStr $ f(v' ^._x) ++ " " ++ f(v' ^._y) ++ " " ++ f(v' ^._z) ++ "\n"

ray_color :: Ray -> [HittableData] -> Int -> StdGen -> V3 Double
ray_color r objects depth gen =
  if depth <= 0 then
    zero
  else
    let
      record = hitSomething objects r 0.0001 infinity
    in
      case record of
        Just record' ->
          let
            (rand1, gen1) = random_in_unit_sphere gen
            target = (p record' + normal record' + rand1)
          in
            0.5 *^ ray_color Ray{orig = p record', dir = target - p record'} objects (pred depth) gen1

        Nothing ->
          let
            unit_direction = normalize $ (dir r)
            s = 0.5 * (unit_direction ^._z + 1.0)
          in lerp s (V3 0.5 0.7 1.0) (V3 1.0 1.0 1.0)


random_in_unit_sphere :: StdGen -> (V3 Double, StdGen)
random_in_unit_sphere gen0 =
  let
    (rand1,gen1) = randomR (-1, 1) gen0 :: (Double, StdGen)
    (rand2,gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    (rand3,gen3) = randomR (-1, 1) gen2 :: (Double, StdGen)
    v = V3 rand1 rand2 rand3
  in
    if quadrance v >= 1 then
      random_in_unit_sphere gen3
    else
      (v, gen3)

random_unit_vector :: StdGen -> (V3 Double, StdGen)
random_unit_vector gen0 =
  let
    (a, gen1) = randomR (0, 2*pi) gen0 :: (Double, StdGen)
    (z, gen2) = randomR (-1, 1) gen1 :: (Double, StdGen)
    r = sqrt $ 1 - z^2
  in
    (V3 (r*cos(a)) (r*sin(a)) z, gen2)


random_in_hemisphere :: V3 Double -> StdGen -> (V3 Double, StdGen)
random_in_hemisphere normal gen0 =
  let
    (in_unit_sphere, gen1) = random_in_unit_sphere gen0
  in
    if in_unit_sphere `dot` normal > 0 then
      (in_unit_sphere, gen1)
    else
      (-in_unit_sphere, gen1)


infinity :: RealFloat a => a
infinity = encodeFloat (floatRadix 0 - 1) (snd $ floatRange 0)

deg2rad :: Floating a => a -> a
deg2rad degrees = degrees * pi / 180

clamp :: (Ord a, Num a) => a -> a -> a -> a
clamp x y val = (max x).(min y) $ val


getIntersection_forTorus :: (V3 Double, V3 Double, V3 Double, Double, Double, V3 Double) -> [Double]
getIntersection_forTorus = solveQuarticEq . genCoefficients


genCoefficients (x0,a,c,r1,r2,n) = (b4,b3,b2,b1,b0)
  where
    d0 = x0 - c
    k = (r1^2) - (r2^2)
    a_sq = quadrance a
    d0_sq = quadrance d0

    b4 = a_sq^2                                       
    b3 = 4*(d0 `dot` a)*a_sq                          
    b2 = 2*d0_sq*a_sq+4*((d0 `dot` a)^2) + 2*k*a_sq - 4*(r1^2)*a_sq         + 4*(r1^2)*(n `dot` a)^2
    b1 = 4*d0_sq*(d0 `dot` a)+4*k*(d0 `dot` a)      - 8*(r1^2)*(d0 `dot` a) + 8*(r1^2)*(n `dot` d0)*(n `dot` a)
    b0 = d0_sq*d0_sq+2*k*d0_sq+k^2                  - 4*(r1^2)*d0_sq        + 4*(r1^2)*(n `dot` d0)^2

solveQuarticEq (a4,a3,a2,a1,a0) =
  let
    sol = do
      (x_Re :+ x_Im) <- [x1,x2,x3,x4]
      if (abs(x_Im) < 1.0E-9) && (1.0E-9 <= x_Re) then
        return x_Re
      else
        []
  in
    sol
  where
    l1 = (toCmp $ k3/4)/sqrt(k4)
    l2 = (toCmp $ (cbrt(2)*k5)/(3*a4))/k8 + k8/(toCmp $ 3*cbrt(2)*a4)
    l3 = (toCmp $ (a3^2)/(2*a4^2) - (4*a2)/(3*a4)) - l2
    k1 = l1 + l3
    k2 = -l1 + l3
    k3 = -((a3/a4)^3) + (4*a2*a3)/(a4^2) - (8*a1)/a4
    k4 = (toCmp $ ((a3/(2*a4))^2) - (2*a2)/(3*a4)) + l2
    k5 = a2^2 - 3*a1*a3 + 12*a0*a4
    k6 = 2*a2^3 - 9*a1*a2*a3 + 27*a0*a3^2 + 27*a1^2*a4 - 72*a0*a2*a4
    k7 = -4*k5^3 + k6^2
    k8 = cbrt((toCmp $ k6) + sqrt(toCmp $ k7))

    l4 = toCmp $ -a3/(4*a4)
    l5 = sqrt(k2)/2
    l6 = sqrt(k1)/2
    l7 = sqrt(k4)/2

    x1 = l4 - l5 - l7
    x2 = l4 + l5 - l7
    x3 = l4 - l6 + l7
    x4 = l4 + l6 + l7

cbrt x = x ** (1/3)
toCmp x = x :+ 0
prod x y = x >>= (\u -> zip (repeat u) y)


(-:) = flip (.)

type (+)  a b = Either a b

inj1 :: a -> a + b
inj1 = Left

inj2 :: b -> a + b
inj2 = Right

coPair :: (a1 -> b, a2 -> b) -> (a1 + a2 -> b)
coPair = uncurry either