雑記帳
Haskell でレイトレーシングのチュートリアルを追いかける その2 - 法線ベクトル
引き続きこのサイトのチュートリアルに則って、レイトレーシングによる画像の生成に挑戦。
進捗状況としては、ひとまず「section 6」まで完了。
進捗状況としては、ひとまず「section 6」まで完了。
コードの実行結果
リンク先の結果と一緒なのでそちらを是非見てほしい
ソースコード
{-# LANGUAGE TypeOperators #-}
import Data.Char
import Data.Functor
import Control.Monad
import Control.Lens
import Linear.Vector
import Linear.Metric
import Linear.V3
import Linear.Quaternion
-- https://raytracing.github.io/books/RayTracingInOneWeekend.html section 6 with Haskell--
main = do
let
-- Image
aspect_ratio = 16.0 / 9
image_width = 256
image_height = round $ fromInteger image_width / aspect_ratio
-- World
world = (([]
`add` RT_Sphere{center = V3 0 0 (-1), radius = 0.5})
`add` RT_Sphere{center = V3 0 (-100.5) (-1), radius = 100})
-- Camera
viewport_height = 2.0
viewport_width = aspect_ratio * viewport_height
focal_length = 1.0
origin = zero
horizontal = viewport_width *^ unit _x
vertical = viewport_height *^ unit _y
lower_left_corner = origin - horizontal ^/2 - vertical ^/2 - focal_length *^ unit _z
-- Render
img_data <- return $ "P3\n" ++ show image_width ++ " " ++ show image_height ++ "\n255\n"
putStr $ img_data
foldr (>>) (return ()) $ (fmap $ ($) $ \(j, i) ->
let
u = fromInteger i / (fromInteger image_width - 1.0)
v = fromInteger j / (fromInteger image_height - 1.0)
r = Ray {orig = origin, dir = lower_left_corner + u *^ horizontal + v *^ vertical - origin}
pixcel_color = ray_color r world
in
write_color $ pixcel_color) $
(,) <$> [image_height - 1, image_height - 2 .. 0] <*> [0, 1 .. image_width - 1]
---------------------
-- A Ray Data Type --
---------------------
data Ray = Ray {
orig :: V3 Double, -- Origin of this ray (As a position in 3D Euclidean space)
dir :: V3 Double -- Direction of this ray (As a direction vector in 3D Euclidean space)
} deriving (Show)
at' :: Ray -> Double -> V3 Double
at' r t = (orig r) + t *^ (dir r)
----------------------
-- Hittable objects --
----------------------
data HitRecord = HitRecord {
p :: V3 Double,
normal :: V3 Double,
t :: Double,
front_face :: Bool
} deriving (Show)
set_face_normal :: HitRecord -> Ray -> V3 Double -> HitRecord
set_face_normal this r outward_normal = HitRecord {
p = p this,
normal = if dir r `dot` outward_normal < 0 then outward_normal else (-outward_normal),
t = t this,
front_face = (dir r `dot` outward_normal < 0)
}
data RT_Sphere = RT_Sphere {
center :: V3 Double,
radius :: Double
} deriving (Show)
type HittableObjects = (RT_Sphere + RT_Sphere) + RT_Sphere -- Second and third RT_Sphere are just dummies
class Hittable a where
toSum :: a -> HittableObjects
hit :: a -> Ray -> Double -> Double -> Maybe HitRecord
instance (Hittable a, Hittable b) => Hittable (a + b) where
toSum = coPair(toSum, toSum)
hit = coPair(hit, hit)
instance Hittable RT_Sphere where
toSum = Inj1 -: Inj1
hit obj r t_min t_max =
let
oc = orig r - center obj
a = quadrance (dir r)
half_b = oc `dot` dir r
c = quadrance oc - (radius obj) ^ 2
discriminant = half_b ^ 2 - a*c in
if discriminant > 0 then
let
root = sqrt discriminant
f k =
case k of
x:xs ->
if t_min < x && x < t_max then
return $ set_face_normal HitRecord {
p = at' r x,
normal = zero,
t = x,
front_face = False
} r ((at' r x - center obj) ^/ radius obj)
else
f $ xs
[] ->
Nothing
in
f $ [(-half_b - root) / a, (-half_b + root) / a]
else
Nothing
add :: Hittable a => [HittableObjects] -> a -> [HittableObjects]
add list obj = (toSum obj) : list
hitSomething :: [HittableObjects] -> Ray -> Double -> Double -> Maybe HitRecord
hitSomething list r t_min t_max =
let f (list', r', closest_so_far, currentRecord) =
case list' of
x:xs ->
let
temp = hit x r' t_min t_max
in
case temp of
Just a ->
f $ (xs, r', t a, temp)
Nothing ->
f $ (xs, r', closest_so_far, currentRecord)
[] ->
currentRecord
in
f $ (list, r, t_max, Nothing)
---------------
-- Utilities --
---------------
write_color :: RealFrac a => V3 a -> IO ()
write_color v =
let
f = show.floor.(255.999*)
in
do
tmp <- return $ f(v ^._x) ++ " " ++ f(v ^._y) ++ " " ++ f(v ^._z) ++ "\n"
putStr $ tmp
ray_color :: Ray -> [HittableObjects] -> V3 Double
ray_color r objects =
let
record = hitSomething objects r 0 10000
in
case record of
Just a ->
0.5 *^ ((normal a) + (V3 1 1 1))
Nothing ->
let
unit_direction = normalize $ (dir r)
s = 0.5 * (unit_direction ^._y + 1.0)
in
lerp s (V3 0.5 0.7 1.0) (V3 1.0 1.0 1.0)
-- Diagrammatic-order composition
(-:) = flip (.)
-- Sum objects and injections
data (+) a b = Inj1 a | Inj2 b
instance (Show a, Show b) => Show (a + b) where
show = coPair(show, show)
-- Dual concept of pairs
coPair :: (a1 -> b, a2 -> b) -> (a1 + a2 -> b)
coPair (f, g) x = case x of
Inj1 x -> f x
Inj2 x -> g x
タグ一覧: